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Key question in Heavy Ion Fusion beam science:
How do intense ion beams behave asthey are accelerated and compressed
into a small volume in space and time?

Simulation of space-charge-dominated ion beams
plays a major role in developing the answers

Heavy Ion Fusion
Virtual National Laboratory
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     Outline

I. Introduction
II. Present-day experiments
III. Fundamental beam science
IV. Future experiments & discussion

… and along the way …
New computational methods and
models that have broad applicabilty
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They are collisionless and
have “long memories” —
must follow ion distribution
from source to target
Beam modeling program is
~ 2/3 simulation,
~ 1/3 analytic theory;
here we discuss the former

“Multiscale, multispecies, multiphysics” - ions encounter:
– Good electrons: neutralization by plasma aids compression, focusing
– Bad electrons: stray “electron cloud” and gas can afflict beam

Beams are non-neutral plasmas with dynamics
dominated by long-range space-charge forces

target

beam ions
background ions
electrons
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Time and length scales in driver and chamber span a wide range
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Length scales: • electron gyroradius in magnet ~ 10 µm
• λD,beam ~ mm
• beam radius ~ cm
• lattice period ~ m
• beam length ~ 1-10 m
• machine length ~ km

Time scales:
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Beam starts with a small 6D phase space volume;
applications demand that it grow only modestly
• Present-day (e.g., “HCX”) beams, roughly:
– Total ions N ~ 5 x 1012 (K+) in ~ 5 µs (0.2 Amperes)
– line charge density λ ~ 0.1 µC/m
– number density n ~ 1015 m-3
– kinetic energy Ek ~ 1 MeV (v/c ~ 0.005)
– temperature Teff ~ 0.2 eV at 5-cm source,

~ 20 eV in transport section
– beam radius r ~ 1 cm

• T and r translate to initial transverse phase space area
(“normalized emittance”) ~ 0.5 π-mm-mr
• Downstream, in a 2-GeV driver:
– λ increases ~ 5x in accelerator, then 20x in final compression
– Have “headroom” for phase space area to grow by
~ factor of 10 (less is always better)
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Particle-in-Cell (PIC) is main tool; challenges are
addressed by new computational capabilities

• resolution challenges (Adaptive Mesh Refinement-PIC)
• dense plasmas (implicit, hybrid PIC+fluid)
• short electron timescales (large-∆t advance)
• electron-cloud & gas interactions (new “roadmap”)
• slowly growing instabilities (δf for beams)
• beam halo (advanced Vlasov)
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ES / Darwin PIC and moment models EM PIC rad -
hydroWARP:  3d, xy,  rz, Hermes LSP

EM PIC,       δf,            Vlasov
LSP         BEST        WARP-SLV

Track beam ions consistently along entire system
Study instabilities, halo, electrons, ..., via coupled detailed models

HIF-VNL’s approach to self-consistent beam
simulation employs multiple tools

Ion source
& injector Accelerator Buncher Final

focus
Chamber
transport Target
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II. Simulations and theory support
present-day ion beam experiments

Heavy Ion Fusion Virtual National Laboratory

Simulations & Theory

HCXInjectors NTX
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Injectors Research on high-brightness sources & injectorsuses test stands, including STS-500 at LLNL
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Fine grid patch around
source & tracking beam edge

Application to HCX triode in axisymmetric (r,z) geometry

This example:
~ 4x savings in
computational cost

(in other cases, far
greater savings)

Particle simulation & adaptive mesh refinement
(AMR) are married at last!

 (Simulations by J-L. Vay)
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Adaptive Mesh Refinement requires automatic
generation of nested meshes with “guard” regions

Simulation of diode using merged Adaptive Mesh Refinement & PIC
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Rise time
Current (mA) at Faraday cup

Experiment
Theory

Result depends critically
on mesh refinement

Phase space at end of diode
Warp simulation   Experimental data

 (Simulations by
I. Haber, J-L.
Vay, D. P. Grote)
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WARP simulations of STS-500 experiments
significantly advance the state of the art

5-cm-radius K+
alumino-silicate source
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0. 1.5-7.5

7.5

0.5 1.0Z (m)
X (mm)

119 beamlets, ITotal = 0.07 A, Efinal = 400 keV Normalized emittance

RZ and XY for synthesis; 3D for validation

WARP simulations guided the physics design of the
beamlet-merging experiment on STS-500

 (Simulations by D. Grote)
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ESQ injector
Marx

matching

10 ES quads

diagnostics

diagnostics

ESQ injector
10 Electrostatic quads

diagnostics

4 Magnetic quads

K+ Beam
~ 0.2 - 0.5 A
1 - 1.7 MeV
~ 5 µs

The High Current Experiment enables studies of
beam dynamics and stray-electron physicsHCX
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Time-dependent 3D simulations of HCX electrostaticquadrupole injector reveal beam-head behavior

From a WARP movie by J-L. Vay; see
http://hif.lbl.gov/theory/simulation_movies.html
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(frame from a WARP movie by J-L. Vay)

Matching section compresses beam significantly
before it enters the HCX transport line
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A common experimental diagnostic is based on slit-scanners

Crossed-Slit Intensity Map:
Measures the distribution of
beam current density in the
transverse plane

Two-Slit Emittance Scan:
Measures the beam phase space
projection perpendicular to the slits:
slit 1 selects
for position x

slit 2 selects for
“slope” x′!≡ px/pz

detector

The 4D distribution ƒ(x,y,x′,y′) is not uniquely determined by a
small number of such 2D scans; “synthesize” an ƒ tomographically
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y

x

y

x

Some HCX runs use initial conditions derived from slit-scan data

Hollowing is a common feature

x′

x

WARP

x′

x

Experiment

(Simulations by C.Celata)

y′

y

y′

y

Simulations initialized this way agree
only roughly w/expt ⇒ need better data



“Optical slit” diagnostic is yielding unprecedented
information about the HCX beam particle distribution

Isosurface upon which ƒ(x,y,x′) = 0.3 ƒmax

face-on (xy) view rotated to right

shadow of
“bridge”
across slit

This scanner measures f(x,y,x′)
It can be “gated” in time

x
u

vy
ScintillatorSlit
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Neutralization competes with stripping
in the target chamberNTX
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4 magnetic
quadrupoles

MEVVA source 
(plasma plug)

RF source
(volumetric)

Scintillating 
glass diagnostic

The Neutralized Transport Experiment (NTX) enables
studies of beam neutralization and focusing

Non-neutralized 

Plasma plug +
volume plasma

FWHM = 6.6 mm

FWHM = 1.5 mm
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∆Q1= ± 5%

∆Q2= ± 2%

∆Q3= ± 2%

∆Q4= ± 2%

Nominal energy and fields

Variation of beam image vs. quadrupole strength shows
good agreement of NTX data with WARPxy simulations

Images at entrance to neutralized transport section
             Experiment                      Simulation
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LSP simulations of NTX transport are now being
initialized with the measured 4D particle distribution

LSP fluence at target
Carsten Thoma, et. al.

•EM, 3D cylindrical geom., 8 azimuthal spokes
•3 eV plug 3x109 cm-3, volume plasma 1010 cm-3
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Small-scale experiments are studying
long-path transport physics

Princeton’s Paul Trap
Simulator Experiment
Ion bunch confined
in oscillating electric
quadrupole field;
equivalent to 1000’s of
lattice periods

Univ. of Maryland Electron Ring (UMER)

scaled
exp’ts
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Experiment (top) vs. WARP simulation (bottom)

 Q1  Q3  Q4

Scaled electron ring at U. MD is simulated using WARP

The rings are due to edge lensing
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III. Fundamental beam science
studies center on “afflictions
and avoidance thereof”

Heavy Ion Fusion Virtual National Laboratory

– Electron cloud
– Instabilities
– Beam halo
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Stray electron density derives from beam ionization of gas
+ ion flux to wall × e-’s per incident ion × e- lifetime

Electrons can
trap into beam
space-charge
and quadrupole
magnetic fields

Electron
lifetime ~
time to drift
out the end
of a
magnetic
quadrupole

Gas, electron source diagnostic ⇒
for number and energy of
electrons and gas molecules
produced per incident ion

Beam
Tiltable
target

e -
cloud

beam

Experiments and simulations explore sources,
sinks, and dynamics of stray electrons
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We are following a road map toward toward self-
consistent e-cloud and gas modeling in WARP

WARP (ion PIC) I/O
↓

fbeam, F, geom.

electron dynamics
(full orbit; large-Dt drift hybrid

wall-desorbedelectronsource
volumetric(ionization)electronsource

gas module

penetrationfrom walls ambient

Reflected
ions

peak
charge
exchangeionization

nb,vbfb,wall

fb,wall

F sinks
ne

ions

 fb,wall

operational; implemented / testing;
partially implemented; offline development
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Full-orbit , ∆t=.25/fce           Large time-step interpolated

We envision possible applications in MFE, astrophysics, near-space, …
See Ron Cohen’s invited talk at APS-DPP 2004

min

peak

New large time-step electron mover reducescomputational effort by factor of 25
Simulated wall-desorbed electron density distributions (log scale)

Electrons in 45° regions caused by first-flight reflected ions 
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Nonlinear δf simulations reveal properties
of electrostatic anisotropy-driven mode

• When T⊥ > T, free energy is available for a Harris-like instability
• Earlier work (1990 …) used WARP
• Simulations using BEST δf model (above) show that the mode
saturates quasilinearly before equipartitioning; final ∆v ≈ ∆v⊥ / 3
• BEST was also applied to Weibel; that mode appears unimportant
for energy isotropization
• BEST, LSP, and soon WARP are being applied to 2-stream

Instabilities
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• 4D Vlasov testbed (with
constant focusing) showed
halo structure down to
extremely low densities

Solution of Vlasov equation on a grid in phase
space offers low noise, large dynamic range

x

px 10-5

10-4

10-3

10-2
10-1
1

Evolved state of density-mismatched
axisymmetric thermal beam with
tune depression 0.5, showing halo

Halo
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New ideas include moving grid in phase space to model
quadrupoles, adaptive mesh to resolve fine structures

⇐
moving phase-space
grid, based
on non-split
semi-Lagrangian
advance

⇒
adaptive mesh
in phase space
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IV. Simulations enable exploration
of future experiments

Heavy Ion Fusion Virtual National Laboratory

– Neutralized Drift Compression Experiments
(NDCX sequence) & Modular Driver (MD)

– Integrated Beam Experiment (IBX)
& Robust Point Design (RPD)
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HIF requires High Energy Density Physics (HEDP);
strongly-coupled 1-eV plasmas will come first

• HEDP regime is > 1011 J/m3 (NRC)
• Ex: an integrated beam physics expt (NDCX-2, ~FY09):

He+, 10 A, 2 MeV, rspot = 1 mm
τp << 1 ns    (pulse duration << hydrodynamic disassembly time)

• Must:
- Produce the beam
- Compress it longitudinally
- Focus it

• Approach:
- “Accel-decel” or other short-pulse injector
- Neutralization to allow drift compression in short distance
- Final focusing system with large chromatic acceptance

NDCX& MD
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Neutralized Drift
Compression

400 kV injector, focusing
magnets, induction core

First neutralized drift experiment

1.4 m
drift section

Accel-Decel Bunching &
Solenoid Transport

NDCX-1 experiments (FY06-07) will study
neutralized compression by factors of 10-100
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As simulated:
• Axial compression 120 X
• Radial compression to 1/e
focal spot radius < 1 mm
• Beam intensity on target
increases by 50,000 X.

R(c
m)

3.9T solenoidZ(cm)

LSP simulations of neutralized drift and focusing show
possibility of strong compression in NDCX-1

(simulations by Welch, Rose, Henestroza, Yu) 

Ramped 220-390 keV, K+, 24 mA ion beam
injected into a 1.4-m long plasma column
with density 10 x beam density.
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vb = c/2; lb = 7.5 c/ωp;
ωc=5ωp;  rb = 1.5 c/ωp;
nb = np/2

2D EM PIC code
“EDPIC” in XY slab
geometry, comoving
frame, beam &
plasma ions fixed

Analytic theory &
simulation by Igor
Kaganovich

ne/npelectron density contours

y (c/ωp)

x (
c/ω

p)

electron
flow
past
beam

Simulation of ion pulse neutralization: waves induced in
plasma are modified by a uniform axial magnetic field



38 (Simulations by D.Welch & D. Rose)

Ne+ beam
Pulse energy: 140 kJ
Energy ramp: 200 - 240 MeV
Current: 3→140 kA
Beam radius: 10 cm → < 5 mm
Pulse duration: 210→ 5 ns

Run shows filamentation,
but 92% of beam still
falls within the 5 mm
spot needed for a
hybrid distributed
radiator target

100-m plasma column

LSP hybrid simulations of a “modular driver” show
effectiveness of neutralized compression and focus
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3D WARP simulations of an “ideal” IBX
show quiescent behavior

z (m) in fixed-then-moving frame

• Beam created at
source, matched,
accelerated, begins
to drift-compress.

• Parameters:
1.7 → 6.0 MeV
200 → 100 ns
0.36 → 0.68 A
4.6 µs of
beamtime

separating
tailλ

(µC/m)

Mesh
frozen

Mesh
accelerates
with beam

Drift
compression

Line-charge at 100 successive
times (vertically offset)

(D. P. Grote)

IBX
& RPD
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Neutralization of an “RPD” main pulse in fusion
chamber yields a focal spot with 1.2 mm RMS radius
Beam radius vs. time at selected points over a 6-m focal length:

(LSP simulations by W. Sharp)2 kA, 4 GeV, Bi+
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Program needs drive us toward “multiscale,multispecies, multiphysics” modeling
• e-Cloud and Gas:
– merging capabilities of WARP and POSINST; adding new models
– implementing method for bridging disparate e & i timescales

• Plasma interactions:
– LSP already implicit, hybrid, with collisions, ionization, …
now with improved one-pass implicit EM solver
– Darwin model development (W. Lee et. al.; Sonnendrucker)

• New HEDP mission changes path to IFE; models must evolve too
– Non-stagnating pulse compression
– Plasmas early and often
– Modular approach a natural complement

• Injectors
– Merging beamlet approach is multiscale
– Plasma-based sources (FAR-Tech SBIR)

Discussion
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While simulations for Heavy Ion Fusion
are at the forefront in terms of the
relative strength of the space charge
forces, a wide range of beam
applications are pushing for higher
intensity, and will benefit from this work
MFE applications may also benefit from
AMR-PIC, Vlasov, e-mover, …

This talk drew on material from quite a
few people - my thanks to all!

Closing thoughts …



43 Heavy Ion Fusion Virtual National Laboratory

End
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Targets set ultimate physics regime of beams

Epulse ~ 3-7 MJ; τpulse ~ 8-10 ns ⇒ ~ 500 TW
A ~ 100-200; range 0.02 - 0.20 g/cm2 ⇒ Ion energy 1 - 10 GeV
~1016 ions total,  ~ 100 beams at ~ 2-4 kA/beam

“Distributed radiator” target
Beam spot 1.8 mm x 4.1 mm
5.9 MJ beam energy
Gain = 68

“Hybrid” target
Beam spot 3.8 mm x 5.4 mm
6.7 MJ beam energy
Gain = 58

foot
pulse

main
pulse
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II. MINI - IBX   Proposed Schematic FY2007
(Yu/Matthaeus, 11-12-03 PAC)

Short acceleration and compression
tilt section to 700 keV (use existing
ETA and DARHT Cores)

1.4 m long 
Neutralized

Drift
Solenoid and 
Z-Pinch focus

Short Pulse
accel-decel
Injector

FY09 Integrated beam experiments on neutralized
compression and focusing to targets (NDCX-2)

 Needs ~1 A Helium beam injector instead of
present 25 mA K+, and larger B.a solenoid

Limited-shot
and/or non-
intercepting
target focus
diagnostics

(Representative schematic)
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Integrated beam simulation from source throughinjection into NDCX-2 decel /post acceleration section

z (m)

r (m)

He+1 beam
(1A at source)

Beam
bunches up
to 1.2 µC/ m
for post-
acceleration

This simulation of
the NDCX-2 front
end by Henestroza
feeds into the
simulation by
Welch, et. al., for
the back end.
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1.5-meter long plasma column
Beam: He+ ;     Pulse energy: 0.7 J
Energy ramp: 500 - 1000 keV
Current: 10 → 750 A,
Pulse duration: 100 → 1 ns,
Beam radius: 20 → < 1 mm (Simulations by D.Welch & D. Rose)

2T Solenoid 52-92 cm,
Z-pinch 92-end, idealized:
sigma for plasma, no dipole

Preliminary LSP simulations show neutralized compression
& focusing in NDCX-2, for 1st HIF exp’ts in HEDP regime

R (
cm
)

Z (cm)
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Two ion dE/dx regimes to obtain isochoric ion energy
deposition in 1-to-few eV warm-dense matter targets

HIF linacs with ~ 0.5-1 J of ions
@ ~0.3 MeV/u would work best
heating thin foils near the
Bragg peak where dE/dx~ 0
  ! ~3 % uniformity possible
(Grisham, PPPL). Key-issue:
can < 300 ps ion pulses to
avoid hydro-motion be
produced?

z

dE/dx

Heavy-ion beams of >300 MeV/u at GSI must heat thick
targets with ions well above the Bragg peak! kJ energies
required @ <300 ns to achieve ! ~15% uniformity.

~3 µm
~3 mm
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Key issue for ion accelerator-driven HEDP: limits of beam
compression, focusing and neutralization to achieve short (sub-ns)
ion pulses with tailored velocity distributions.

z=900 cm
z=940 cm

z=100 cm z=500 cm

z=980 cm

Recent HIF-VNL simulations of neutralized drift compression of heavy-
ions in IBX are encouraging: a 200 ns initial ion pulse compresses to
~300 ps with little emittance growth and collective effects in plasma.

Areas to explore to enable ion-
driven HED physics:
•Beam-plasma effects in
neutralized drift compression.
•Limits and control of incoherent
momentum spread.
•Alternative focusing methods
for high current beams, such as
plasma lens.
•Foil heating (dE/dx
measurements for low range
ions < 10-3 g/cm2) and diagnostic
development.

(LSP simulations
by Welch, Rose,
Olson and Yu
June 2003)
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Simulation relevant to NDCX-I accel /decel experiment: Injected 2µs
parabolic pulse, 25 mA, 10 keV, K+ beam, accelerated by a constant200 kV/m (0 to1.5 m, after loading). (E. Henestroza 11-14-03)

LINE CHARGE AND VELOCITY PROFILE

vz(m/s)
λ(10^-13C/m)

z(m)

vz(m/s)
λ(10^-13C/m)

z(m)

vz(m/s)
λ(10^-13C/m)

z(m)
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39.9 m (80 periods)

1.9 m

91 semi-Gaussian beamlets
(each 0.006 A, 0.003 π-mm-mr),
1.2-1.6 MeV;   29 M particles,
1024x1024 grid, 4000 steps,
18.2 hrs on 64 IBM SP proc’s

At Pierce column exit

0.5 m past column

40 mm
4.1 m

2-D WARP simulation of multi-beamlet merging in anovel approach to an ion injector

(frames from a WARP movie by D. P. Grote)
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Simulations of two injector approaches: similar
emittances, qualitatively different phase spaces

(at end of matching section)
ESQ injector (555 mA) Merging-beamlets (572 mA)

0.5 m

(4.1 m past end of Pierce columns)

x (m)

x′ ≡ px/pz x′

x (m)
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32 mA beam:
53% fill factor;
good transport
consistent with
simulations

Magnet aperture

y (
mm

)

PIC statistical edge
Expt data +

+

WARPxy 2D simulations initialized with measured
(a,a′,b,b′) have been “workhorses” for HCX

Extreme-particle edge
z (m)

PIC statistical edge

175 mA beam:
67% fill factor;
recent experiments
& simulations have
been aimed at
achieving clearance
for diagnostics
insertion

(Simulations by S. Lund)

y (
mm
) new

diagnostics

x  (mm)

z (m)x  (mm)
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 self-consistent
 2-plane reconstruction after ESQ
 3-plane reconstruction after ESQ
 semigaussian

We are using simulations to learn what data we need to
take, and how best to use the data we obtain

• Simulations initialized using 4D particle distributions
synthesized from ESQ-exit slit-scan data (simulated,
here) are far better than those using an ideal distribution
• An (x,y) scan, in addition to (x,x′) and (y,y′), is important

z (m)

No
rm

ali
ze
d x

 em
itta

nc
e (
π-m

m-
mr

)

semi-Gaussian

Integrated simulation,
starting at source

3-plane synthesis
adding (x,y) data

2-plane synthesis
using (x,x′) and (y,y′)
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Non-neutralized Plasma plug Plasma plug &
Volume plasma

0
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Plasma Plug andVolume Plasma

FWHM=6.6 mm FWHM=2.2 mm FWHM=1.5 mm0

1

95%
neutralized

6 mA    Plasma density = 2 x 1011 /cm3

Reduction of spot size using plasma plug and volume
plasma
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WARP simulations of the UMER electron gun reproduce
some features of the observed velocity space

Beam velocity distribution emerging
from the gun, measured as a phosphor
screen image of the beam after
passage through a small hole (simulations by I. Haber / R. Kishek)
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Nonlinear-perturbative BEST simulation of ion-electron
two-stream instability reveals structure of eigenmode

δφ

x
y
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Achieving HIF goals requires many processor-hours
• Source-to-focus WARP PIC simulation of a beam in a full-scale HIF driver
– On Seaborg: key kernels achieve 700-900!Mflop/s single-processor;
aggregated parallel performance is ~100!Mflop/s per processor

– Observe good scalability up to 256 proc’s on present-day problems;
can assume further algorithmic improvements & larger problems

– Next-step exp’t (minimal): 440 proc-hrs (128x128x4096, 16M part’s, 10k steps)
– Full-scale system w/ electrons: 1.8 M proc-hrs (4x resolution, 4X longer beam,
4X longer path, two species, ∆t halved, using new electron mover)

• While performance on the SP is comparable to that of other large codes,
the SP architecture is not ideal for this class of problem
– A higher fraction of peak parallel speed was achieved on T3E than SP
– WARP should adapt especially well to a vector/parallel machine
– Hardware gather and scatter valuable; scatter-add even more so
– Trends toward multi-physics complexity and implicitness imply that benefits would
accrue from easy programmability, flexibility, good parallel performance
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Noteworthy progress in ion beam modeling is being made
• Simulation studies in support of experiments:
– Injector science: large-aperture aberrations; short rise-time tests; multi-beamlet merging
– HCX: WARP studies of transport & matching into magnetic quads; analysis of optical data
– NTX: WARP and LSP studies of beam transport and focusing

• Studies of future experiments
– Neutralized Drift Compression Experiments studying compression in space and time
– simulation and analysis of HEDP-relevant beam experiments and modular driver approaches
– time-dependent 3D simulations of a model IBX
– scoping of scaled multi-beam experiment using electrons (with U. Md.)

• Fundamental beam science studies
– electron cloud effects
– quantitative assessment of effects of quadrupole magnet strength errors
– “Harris” and “Weibel” anisotropy modes, and two-stream instability
– drift compression and final focus (both non-neutral and neutralized), including solenoid
focusing; time-dependent focusing; and chromatic aberration studies

– beam aperturing and effects of beamline transitions
– parametric limits to stable transport set by both envelope and kinetic effects

• Development of advanced simulation capabilities
– Mesh refinement capability in WARP (application to injector triode, rise time study)
– New Vlasov modeling methods: moving-mesh and “non-split” advance (with E. Sonnendrucker)
– Large-timestep electron mover to allow computation on ion timescale


